P. Gill & son, Aberdeen – tillverka en grahamhake

För cirka ett år sedan tillverkade jag en hake till ett golvur jag fått av en god vän. Bakgrunden är golvuret inte hade fungerat på många år, fodralet hade vält och var sprucket. Eje – som var urmakare hade låtit tillverka ett nytt gånghjul efter det hade inte klockan fungerat. Han hade skickat det gamla gånghjulet till urmakarskolan och bett dem tillverka ett nytt. Tydligen hade något blivit fel, det gamla hjulet hade han inte fått tillbaka.
Baserat på måttuppgifter i verket, haken och gånghjulet – gjorde jag en ritning över grahamgången. Det visade sig att så som delarna var nu kunde inte verket fungera. Testade att göra flera ritningar med ändrat centrumavstånd, nytt gånghjul till den gamla haken, men så som haken var tillverkad och det befintliga centrumavståndet skulle det inte heller fungera med ett nytt gånghjul. Vet inte hur klockan fungerat innan gånghjulet byttes, men enligt mina böcker hur en grahamgång skall vara konstruerad stämde inte måtten. Min lösning var att göra en ny hake till det nytillverkade gånghjulet, det skulle fungera även med centrumavståndet mellan gånghjul och hake.
Tänkte att detta kunde bli ett intressant arbete för mig och min CNC-maskin som jag precis börjat att lära mig.
Första utmaningen var att rita upp haken i CAD-programmet, sedan göra en fil till fräsningen i CAM-programmet, till sist fräsa ut hakens form med CNC-fräsen.
Nästa utmaning blev att tillverka paletterna. Valde en stång av Sandvik AP-20 som är ett fint stål som går lätt att härda och få hårt. Fräste ut ett platt ämne som jag sedan böjde mot mitt stålplan som visade sig ha en bra radie. Justerade formen så att den passade i spåret i den nya haken. Härdade och anlöpte paletterna. Provade hårdheten med mina hårdhetsfilar så att de blev riktigt hårda. Sista utmaningen blev att få rätt vinkel på hävytan. Tillverkade ett verktyg som passade i hålet för försättaren. Sedan kunde jag använda min diamantskiva och slipa in paletten. Nollställde gradskivan på mitt verktyg mot diamantskivan, flyttade sedan hela verktyget tills jag fick rätt vinkel. Sedan var det översyn av verket och laga fodralet som gällde.
Klockan har funkat i över ett år nu, så jag måste gjort rätt.

Stabilis 14689 – balans i bur, del 3

I denna sista del beskriver jag reparationen och de fel som jag blev tvungen att åtgärda.
Det första jag konstaterade var att det var något konstigt med balansen, det såg ut som att en tapp var avbruten. Konstruktionen tillät inte att enkelt lyfta ur balansen för att konstatera att så var fallet. Jag blev tvungen att plocka isär hela urverket för att se vad som var fel med balansaxeln och lära mig mer om hur verket var konstruerat. När allt var isär kunde jag se att balansaxeln var alldeles för kort. Någon hade slarvigt tillverkat en axel där speciellt den undre axeltappen var som en vevaxel, alla ytor var randiga och nitningen var hög och konstig. Jag måste svarva en ny balansaxel.
I ett ”vanligt” fickur kan man ta bort motstenarna och enkelt mäta hur lång balansaxeln skall vara. Här var den undre motstenen fast monterad i verkbottnen så det gick inte att mäta. Jag fick chansa lite på längden och öka på måtten något med den gamla axeln som förebild. Det undre hålet satt väldigt hårt och trögt, fick slipa till formen för att det skulle gå lätt att få bort. Det övre stenhålet var spräckt. När hålen var åtgärdade kunde jag anpassa balansaxelns mått tills den passade.
En del delar var rostiga, jag brukar vara försiktig när jag tar bort rost. Jag vill inte ändra på några ytor om jag inte måste. Därför brukar jag använda olika mejselformade verktyg i mässing eller nysilver för att ta bort löst sittande rost. På funktionsytor brukar jag använda ”snälla” slip- och polermedel.

Nu ska verket sättas ihop. Lägg märke till den märkliga ordningen att sätta ihop verket!
1. Hake och klove.
2. Gånghjul, sekundhjul och mellanhjul.
3. Balansen sätts i bryggan som därefter sätts i verket.
4. Centrumhjulet och fjäderhuset.
5. Resterande bryggor och klove.

I den moderna Leroyen som jag visade i förra inlägget har man tänkt igenom konstruktionen mer och gjort förbättringar så att det är lättare att arbeta med balansen.

Denna reparation var spännande och intressant, att få en inblick i den tekniska utvecklingen av problemet med att enkelt justera haltningen. Konstruktionen med den justerbara haltningen användes i några olika fickur med Stabilisverk samt i ett fåtal kronometrar från Longines. En spännande tanke är att undra varför Brun valde denna konstruktion framför den andra – som han också uppfann – den vi idag känner i alla moderna klockor. Skänker en tacksam tanke till Brun varje gång jag enkelt justerar haltningen med hans geniala uppfinning. Han fick själv aldrig uppleva det totala genomslag som hans konstruktion mycket senare fick.
Jag tänker på dagens konstruktion av haltningsmekanismen – det krävs en del efterforskningar för att se om det kan finnas kopplingar till Brun själv eller de företag som han var involverad i, till exempel Depollier eller Jurassienne. Har hittat liknande konstruktioner bland patent, till exempel gjorde en man som hette Richard Lange från Glashütte flera konstruktioner som liknade Bruns. Vem vet, jag kanske återkommer i frågan.

Stabilis 14689 – balans i bur, del 2

När jag öppnat båda boettlocken överraskades jag av ett vackert dekorerat urverk försett med en märklig konstruktion där en balansklove normalt brukar sitta.  Min första tanke var – en tourbillon – men jag upptäckte snart att den hjulliknande konstruktionen var fastskruvad i verkbottnen.  Jag tänkte förklara lite mer ingående några av de mer ovanliga finesser detta urverk har.

Balansbrygga
Jag börjar med buren eller den roterbara balansbryggan som Brun själv benämner den. Den hjulformade bryggan passar perfekt i en ursvarvning i verkbottnen, för att hålla fast bryggan är två skruvar placerade motstående. I ett D-format hål passar spiralens ytterfäste in. Om man lossar något på skruvarna kan bryggan roteras så att haltningen kan ställas in. Haltning mäts i millisekund (ms), en perfekt inställd haltning är 0 ms och man försöker få den i alla fall mindre än 1 ms. En modern testmaskin visar haltningen

direkt i ms, men även via det klassiska strecket på pappersremsan eller displayen kan man se haltningen. Testmaskinen visar två streck om klockan haltar, avståndet mellan strecken visar hur mycket klockan haltar. Är haltningen stor kan balansens amplitud eller svängning påverkas negativt, man vill alltid ha så liten haltning som möjligt. Testapparaten jämför den tid det tar mellan tick – en tänkt mittlinje – till tack och omvänt.

I Bruns patentansökan från 1904 skriver Brun att hans uppfinning ska göra det enkelt att justera positionen för ytterfästet – spiralstolpen. Andra fördelar var skydd för själva balansen, skydd för spiralen samt att man enkelt kunde inspektera spiral och gångparti. Han skriver även att konstruktionen i fig. 1 och 2 var den att föredra framför den som illustreras i fig. 3 och 4. Konstruktionen som Brun inte föredrog är i stora delar den som började användas mer allmänt på 50-talet och som nu är dominerande i dagens urverk.

Nackdelarna med den roterbara balansbryggan tycker jag överväger fördelarna. Man är van att snabbt kunna justera balans- och gångparti när urverket är ihopsatt genom att bara ta bort balanskloven. Här måste man ta bort centrumhjul och -brygga, samt ta bort kloven för gånghjulet för att få lös balansen. Även själva ordningen när sätter ihop verket kändes konstig. När haltningen var korrekt inställd enligt min testapparat och bryggskruvarna drogs åt flyttades kloven så att balansen kom åter i haltning. Att ställa in haltningen med mindre än 1 ms fel var mycket svårt.
Det moderna företaget Leroy har använt Bruns balansbrygga i kaliber L200 från 2015.


Balans
Detta urverk är utrustat med Guillaumebalans. Vid en första anblick ser den ut som en vanlig kompensationsbalans, man får titta efter extra noga. Balansen är

uppskuren en bit ut räknat från skänkeln – i detta fall en ”skruvbredd”. Men det som är det viktigaste, som man inte kan se med vanliga metoder är den speciella stållegeringen som ståldelen av balansen består av – den speciella Aniballegeringen som Guillaume uppfann. En kompensationsbalans kompenserar för temperatur-förändringar. Den är tillverkad av bimetall – stål och mässing. Stål och mässing har olika temperatur-koefficienter. I värme expanderar stål mindre än mässing, det gör att den fria änden av balansen rör sig inåt, balansens verksamma diameter minskar vilket gör att klockan fortar, detta kompenserar för den minskade elasticiteten i spiralen vid en värmeökning. En vanlig, rätt justerad kompensationsbalans kompenserar för värmeskillnader på ett mycket effektivt sätt. Men en Guillaumebalans gör det i det närmaste helt perfekt! Den kompenserar nämligen även för det så kallade sekundära felet. Att kunna kompensera för det sekundära felet är nyckeln till att få en kronometer att gå exakt. Vad är då det sekundära felet?
När man testar en kronometers gång gör man det i kyla, rums-temperatur och värme, det brukar vara vid +4C, +20C och +35C. En vanlig kompensationsbalans kompenserar inte linjärt, det blir en topp någonstans. Då måste man ha någon form av hjälpkompensation som tar bort den toppen = det sekundära felet. Innan Guillaume kom på aniballegeringen (anibal är en förkortning av Acier au NIckel pour BALanciers) gjordes många snillrika konstruktioner av balanser, där den svenske urmakaren Victor Kullberg särskilt utmärkte sig.

Guillaume fick 1920 års nobelpris i fysik för sin forskning om legeringar mellan nickel och stål. Han upptäckte bland annat den märkliga legeringen invar som fått stor betydelse inom urmakeriet för den speciella egenskapen att den har ytterst liten värmeutvidgning.
För att en balans ska få kallas Guillaumebalans krävs kombinationen av en bimetallbalans med mässing och den speciella stållegeringen anibal tillsammans med en stålspiral. Så en Guillaumebalans är ett system som består av både spiral och balans tillsammans.

Uppdrag och visarställning
Edward Staehli beskriver systemet så här: genom en utåtgående rörelse av kronan påverka muffhjulet till en inåtgående rörelse som tillåter ingrepp med visarställhjulen. Genom en inåtgående rörelse av kronan till sin normala position tillåter ingrepp med uppdragshjulen.
Han skriver även: att i boettens pendant är en ställhylsa monterad som vanligt i denna typ av klockor.
På engelska brukar detta system kallas ”negative set eller American”. På svenska kanske negativ visarställning.

Delar i uppdraget

Del av mekanismen på tavelsidan

Del av mekanismen på verksidan

Källor:
The Theory of Horology, 1999.
Reymondin et al.
Lärobok i urmakeri, Sandström, 1983.
https://patents.google.com/patent/US824466A/en?oq=j+brun+824466
https://uhrforum.de/threads/only-watch-2015-leroy-chronometre-observatoire.223087/
https://patents.google.com/patent/US833489A/en?oq=staehli+833489

Stabilis 14689 – balans i bur, del 1

I två inlägg kommer jag att delvis publicera två artiklar som finns i TID-SKRIFT 2022. Det är en publikation som varje år sedan 2009 ges ut av De Gamla Urens Vänner i Sverige. Du hittar flera gamla nummer här. För att få TID-SKRIFT behöver du vara medlem i De Gamla Urens Vänner.
Jag kommer att i min del berätta lite mer om själva reparationen och fler detaljer om själva urverket än vad som fick plats i artikeln.
När jag öppnat båda boettlocken överraskades jag av ett vackert dekorerat urverk försett med en märklig konstruktion där en balansklove normalt brukar sitta.  Min första tanke var – en tourbillon – men jag upptäckte snart att den hjulliknande konstruktionen var fastskruvad i verkbottnen.  Jag tänkte förklara lite mer ingående några av de mer ovanliga finesser detta urverk har i del 2.

Men först ska Eric Leskinen berätta om detta intressanta ur.

Chatelain Leal (Stabilis) observatoriekronometer 14689 har Guillaumebalans,
Joseph Bruns roterande bur och Edward Staehlis uppdrags- och visarställmekanism med hylsa. Det erhöll ett Kew A-certifikat med 67,4 poäng av 100 möjliga år 1912. Reglör var troligen Léon Perrenoud.

Observatoriecertifiering av ur var dels en viktig kvalitetsgaranti, dels viktigt i marknadsföring.  Kew A-certifieringen på Kew-Teddington i Storbritannien var en av de högst ansedda, även bland schweiziska urtillverkare. Uren testades under 44 dagar uppdelat på 8 perioder på 5 dagar vardera och med mycket strikta maximalt tillåtna gränsvärden. Perioderna användes för att testa urverken i olika positioner och i olika temperaturer. De testade uren gavs poäng baserat på hur enhetlig gången var från dag till dag, samt mellan olika positioner och temperaturer. Inget ur uppnådde någonsin 100 poäng, vilket motsvarade en felfri gång, och ur på under 50 poäng uppnådde inte de tillåtna gränsvärdena. Värt att betona är att det alltså krävdes specialjusterade ur av hög kvalitet för att erhålla Kew A-certifiering.

Kew A-resultat av Chatelain & Leal (Stabilis) 14689

Kew A-testning varade i totalt 44 dagar över 8 perioder på 5 dagar vardera. 4 av perioderna (IV, V, VI och VII) föregicks av en vilodag. De testade uren erhöll poäng baserat på hur enhetlig gången var från dag till dag, samt mellan olika positioner och temperaturer.

Sammanfattning av Stabilis 14689s resultat i perioderna 1 till 8:
Mean daily rate (seconds):
Pendant up: -1,3
Pendant right: +1,9
Pendant left: +1,5
Dial up: -3,0
Dial down: +1,6

(a) Mean Variation of Rate (seconds): 0,76
(b) Mean Variation of Rate with change of Position (seconds): 1,85
(c) Mean Change for 1 degree Fahrenheit (seconds): 0,150
Extremes of daily Rate (seconds): 9,15

Beräkning av antalet poäng (marks):
Poäng erhållna för:

Variation: 24,8 (Maximalt 40)
Position: 32,6 (Maximalt 40)
Temperature: 10,0 (Maximalt 20)
Totalt: 67,4 (Maximalt 100)

50 poäng krävdes i praktiken för ett Kew A-certifikat. Ur med testvärden under 50 poäng uppnådde inte de tillåtna gränsvärdena.

Beräkning av poäng för Variation
40 – (a/2*40)
a = Mean Variation of Rate
40 – (0,76/2*40) = 24,8
Beräkning av poäng för Position
40 – (4*b)

b = Mean Variation of Rate with change of Position
40 – (4*1,85) = 32,6

Beräkning av poäng för Temperature
20 – ((c/0,3) x 20)
c = Mean Change for 1 degree Fahrenheit
20 – (0,150/0,3) x 20) = 10

Totala antalet poäng: 24,8 + 32,6 + 10 = 67,4

https://en.wikipedia.org/wiki/King%27s_Observatory#/media/File:The_King's_Observatory_in_winter.jpg:~:text=By%20AndyScott%20%2D%20Own%20work%2C%20CC%20BY%2DSA%204.0%2C%20https%3A//commons.wikimedia.org/w/index.php%3Fcurid%3D115554715

Kew eller The King’s Observatory

Joseph Brun och Stabilis
Joseph Brun var en schweizisk urmakare, reglör, uppfinnare och urverksdesigner från La Chaux-de-Fonds som tyvärr fallit i glömska. Med sina uppfinningar, exempelvis en lösning för att enkelt justera ett urverks haltning eller en tidig typ av stötsäkring för armbandsur, var han på många sätt före sin tid.

Efter mer eller mindre lyckade samarbeten med två andra urmakare under sent 1800-tal, först Antoine Inauen och senare Numa Perrenoud, så blev Joseph Brun år 1900 ensam chef för den urverksamhet och fabrik på adressen Rue de Puits 15 som han själv varit med och grundat. Joseph Brun var förmodligen en så kallad etablisseur, alltså någon som färdigställde och sålde klockor baserade på inköpta råverk och urkomponenter. Året därefter började Joseph att marknadsföra varumärket ”Observatus Stabilis” och erbjöd då precisionsur som justerats i alla lägen och temperaturer, med eller utan gångcertifikat, till förmånliga priser. Företagets ur såldes bland annat i USA, där han drev ett säljföretag, Staehli & Brun, tillsammans med en amerikan, Edward ”Ed” Staehli.
Joseph Brun kom under tidigt 1900-tal att patentera den uppfinning som också har kommit att förknippas med honom, nämligen Joseph Bruns roterande bur. Uppfinningen är en stålbur som balanshjulet och spiralfästet fästs i och som då agerar balansklove.

Buren, och alltså också spiralfästet, kan roteras för att på så vis korrigera haltningen. Utseendet på buren gör att den idag ofta misstas för en tourbillon. I någon mening kan kanske lösningen sägas vara föregångaren till moderna urverks rörliga spiralfästen. Den patenterade stålburen består också av en speciell ruckningsanordning / patentruckning.
Det schweiziska patentet för buren, CH27416, registrerades 1903-08-28 och det amerikanska patentet, US824466A, 1906-06-26. I resultat-listorna från kronometertävlingarna på observatoriet i Neuchâtel, där Stabilis-ur ibland deltog, användes bland annat benämningarna ”balancier Stabilis”, ”cage circulaire mobile” och ”cage circulaire pour Balancier” för att beskriva lösningen.

Joseph Bruns amerikanske affärs-partner Edward Staehli var också en uppfinnare i sin egen rätt och fick 1906 ett amerikanskt patent, US833489A, för en uppdrags- och visarställ-mekanism med hylsa.

Året därefter mönsterskyddade Joseph Brun också uppdrags- och visarställmekanismen i Schweiz, mönsterskydd nummer 14222. På engelska kallas lösningar där kronan och uppdragsaxeln är del av boetten, som i fallet med detta patent, för ”Negative setting”. Negative setting-urverk gav kunden möjlighet att själv välja urverk och boett efter eget tycke och smak hos urförsäljaren.

Joseph Brun må vara mest känd för sin roterande bur, men han designade också ett flertal urverk som han sedermera också mönsterskyddade. För företagets precisionsur och kronometrar med den roterande buren, såsom ur nummer 14689, användes främst modellerna i mönsterskydd 11839 från 1905. Om råverken som användes för urverken faktiskt också tillverkades av Joseph Bruns fabrik är svårt att svara på och det har tyvärr ej framgått av mina efterforskningar. Det var dock inte ovanligt för mindre företag att låta råverksspecialister tillverka råverk baserade på deras designer.

År 1908 grundades aktiebolaget ”Fabrique d’horlogerie Stabilis” i
La Chaux-de-Fonds, med syfte att förvärva och driva urfabriken som grundades av Joseph Brun i La Chaux-de-Fonds. Namnet på fabriken, Stabilis, var troligen inspirerat Joseph Bruns varumärke ”Observatus Stabilis”.

Aktiebolaget företräddes under bolagets första två år av styrelse-ledamöterna Paul-Zélim Perrenoud och Charles-Adolphe Perrenoud. Under fabrikens nya ledarskap fortsatte företagets fokus på tillverkning av precisionsur. Exempelvis deltog Stabilis-ur i kronometertävlingarna på observatoriet i Neuchâtel 1912, 1913 och 1920. Företaget Jules Bloch & frère, Fabrique Diamant i La Chaux-de-Fonds använde också Stabilis-urverk med den roterande buren i kronometertävlingarna på observatoriet i Neuchâtel mellan 1911–1913. Reglör för majoriteten av uren, både från Stabilis själva och från Fabrique Diamant, var Léon Perrenoud.

Tillsammans med flertalet släktingar och affärspartners öppnade Zélim och Charles Perrenoud också ett säljföretag, Chatelain Leal & Cie, med säte i London någon gång runt 1910 för att sälja Stabilis-ur utomlands. Namnet på säljbolaget kom från två av medgrundarna, Charles Gaston Chatelain från Storbritannien och Andre Leal från Frankrike. Bolagets huvudsakliga marknader var de engelskspråkiga länderna USA, Kanada och Storbritannien.

Vid det här laget var sannolikt Staehli & Brun nedlagt i USA och värt att nämna är att Stabilis-ur också såldes av Thomas Russel & Son i Storbritannien. Detta innebar att en intressant situation uppstod vid observatorietävlingarna i Kew-Teddington vissa år, där Stabilis-ur inlämnade av både Chatelain Leal & Cie och Thomas Russel & Son kom att tävla mot varandra.
Chatelain Leal & Cie använde ofta varumärket ”Dreadnought” på sina produkter och förpackningar. Varumärket innefattade utöver namnet också ett så kallat merlion, som bäst kan beskrivas som ett lejon med fiskkropp. För Stabilis-ur som såldes i Storbritannien tycks i huvudsak också boetter tillverkade där ha använts. Många av uren, exempelvis nummer 14689, hade boetter tillverkade av Dennison Watch Case Company Limited. Dennison kunde alltså leverera boetter med stöd för Staehlis uppdrags- och visarställmekanism.

År 1915 grundades aktie-bolaget, ”Record-Dreadnought Watch Co., S. A”, där Paul-Zélim och Charles Perrenoud var två av totalt sju ledamöter i styrelsen. Bolaget var verksamt inom tillverkning och handel av ur och hade sitt säte i La Chaux-de-Fonds och Tramelan-Dessus med säljkontor i London. Bildandet av aktiebolaget Record-Dreadnought Watch Co. innebar att bolagen Fabrique d’horlogerie Stabilis Société Anonyme (Z. Perrenoud & Cie, Fabrique Stabilis), Record Watch Co. och Chatelain Leal & Cie gick ihop. Det förklarar också varför det nya bolaget hade kontor både i La-Chaux-de-Fonds och i Tramelan-Dessus samt ett säljkontor i London.
Det nya bolaget, Record Dreadnought Watch Co., kanske bäst kunde beskrivas som ett holdingbolag där de individuella företagens respektive verksamheter i någon mening alltså fortsatte som tidigare. Värt att nämna är också att ägarskapet för varumärken och urverksdesigner som tidigare ägdes av företagen som gick samman istället togs över av det nybildade Record-Dreadnought Watch Co.
Någon gång efter detta tycks Joseph Brun ha öppnat en ny urfabrik, ”Fabrique d’ Horlogerie Jos. Brun” på adressen Rue de Crêt i La Chaux-de-Fonds. Fabriken samarbetade med företaget ”Manufacture Jurassienne de Machines S.A” och var troligen inriktad på tillverkning av armbandsurverk och komponenter för sådana. 1918 fick exempelvis Joseph ett mönsterskydd, 29853, för armbandsurverk. Någon gång 1920–1921 försattes Joseph Brun i personlig konkurs och de fastigheter han ägde på Rue du Crêt 5–7, exempelvis hans fabrik, erbjöds då till försäljning. Troligt var att Manufacture Jurassienne de Machines, senare namngivet Manufacture Jurassienne S. A, köpte Joseph Bruns tidigare fastigheter runt för att kunna fortsätta urverksamheten. Kanske fortsatte Joseph Brun sin karriär som anställd på detta företag.
Efter sin konkurs samarbetade Joseph Brun med amerikanen Edward Rush Duer från Mount Kisco utanför New York. Tillsammans patenterade de vad som troligen var den första stöt-säkringsanordningen för armbandsur.  Det amerikanska patentet för uppfinningen, US1418427A, beviljades 1922-06-06 och det schweiziska patentet, 99986, beviljades 1922-01-06. Patentet bar många likheter med dagens motsvarigheter.

Det amerikanska aktiebolaget Depollier Watch Company grundades år 1922 med syfte att tillverka och sälja ur baserade på urverk med den patenterade stötsäkringen. Kort efter bolagets grundande, och efter att patentet beviljats, erhöll följaktligen Depollier Watch Company ensamrätten till att tillverka urverk baserade på patentet. För sina ur använde Depollier först urverk tillverkade av Jurassia W. Co., det engelska namnet för Manufacture Jurassienne S. A, och som 1918 hade mönsterskyddats av Joseph Brun. Intressant är att Manufacture Jurassienne 1923 sökte ett nytt mönsterskydd för ett av urverken som Joseph Brun mönsterskyddat 1918. Om Manufacture Jurassienne köpte och tog över fastigheterna så innefattade affären troligen även rättigheterna till hans urverksdesigner och uppfinningar.

Mer om urverket i del 2.

Chronomètre Lavina – tapptapp till hälften

Eric brukar vara exalterad när han gjort ett nytt fynd, men denna gång var det något extra!
Han hade fått tag på något så ovanligt som ett observatorietestat armbandsur där det som står på tavlan faktiskt stämmer.

Först lite om det ganska okända märket Lavina.
Fabrique d’Horlogerie Lavina grundades 1852 av Paul W. Brack och var baserat i Villeret och La Chaux-de-Fonds. Omkring 1910 registrerades Paul W. Bracks företag och varumärket Lavina i hans namn. Företaget producerade 15 och 19 linjers urverk och fick patent på en visarställningsmekanism som användes i alla urverk. 1916 köptes företaget av Dubois-Peseux och urverken såldes till en början under namnet ”Fabrique d’Horlogerie Lavina, Dubois-Peseux et Cie, Successeur de Paul Brack” och blev sedan ”Fabrique Lavina, Dubois-Peseux et Cie”. Därefter tillverkades urverk från 10½ till 20 linjer. Lavina arbetade också för företaget Gruen och var förmodligen också medlem i Alpina Gruen Gilde SA. Eftersom en bild av Lavinas fabrik användes i annonsen Alpina Green Guild. Denna bild av byggnaden har många likheter med fabriken av Manufacture d’Horlogerie Lavina.

Ibland visades dock byggnader större än i verkligheten. Denna fabrik står fortfarande på Rue Le Pontins i Villeret och har aldrig byggts ut. Den 14 juli 1937 döptes företaget om till Lavina SA.

Under andra världskriget tillverkades militärklockor tillsammans med märket Minerva, som också är baserat i Villeret, eftersom kapaciteten ensam inte räckte till för Wehrmachts behov. För att göra det lättare att importera klockor från Schweiz efter kriget registrerades märket ”Lavina” i USA. Emile Bourquin (1893-1986) arbetade för Lavina från 1909 och var produktionschef och firmatecknare fram till 1958. 1961 var J.A. Fiedler direktör. Från 1973 var ”Lavina Watch Case” en del av Holding Favre Leuba i Zug. 1986 etablerades även varumärket Lavina av Jaeger-LeCoultre och Saphir SA. Fabriken stängdes och företaget Vilesa, optiska läsare, tog över den tidigare Lavina urfabriken 1983.

Idag är Lavina AG baserad på Holbeinstrasse 25 i Zürich. 2009 flyttades företagets huvudkontor från Zug till Zürich. Syftet med företaget är design, utveckling, tillverkning, licensiering och försäljning av mekaniska och elektroniska klockor och klockor, solglasögon, parfym och andra lyxartiklar av alla slag, samt tillhandahållande av relaterade konsult-, lednings- och samordningsuppgifter.

I ovanstående annons/artikel från 1951 kan man läsa (fritt översatt):
”Vi ser från den rapport som upprättades av direktören för kantonobservatoriet i Neuchatel för 1950 att Manufacture d’Horlogerie Lavina S. A. i Villeret erhöll 3 certifikat i kategorin kronometrar som ska bäras som armbandsur. Detta resultat bör nämnas, för de tre aktuella kronometrarna utfördes av Lavina med egna grova urverk för serieproduktion. I själva verket var dessa urverk av 13″ kaliber 105 som för närvarande tillverkas av Lavinafabriken. För observatorietävlingarna är de olika urdelarna naturligtvis anpassade till kraven på hög precision, men vi vill insistera på denna punkt verket/kalibern förblir densamma. Det finns också något annat som bör betonas, eftersom vi talar om urdelar. De tre Lavina-kronograferna är försedda med Nivarox antimagnetiska spiraler och Glucydur-balanser, och dessa är de enda balanserna i denna kategori (naturligtvis inklusive de som Nivarox deponerat för olika tester) som inte är försedda med stålspiral och Guillaume-balans. När priset på de senare är känt måste det medges att Lavina ligger i framkant när det gäller resultat, för den observationsprecision som erhölls gjordes med hjälp av urdelar för serietillverkning, inklusive Nivarox-spiralen och Glucydur-balansen. De ansträngningar som Lavina har gjort i denna riktning är värda traditionerna i vår schweiziska urindustri och vi kan bara hoppas att denna fabrik kommer att få allt större framgångar i sina ansträngningar att uppnå precision.”

Något om verket och de saker som behövde åtgärdas.
Vid en första anblick av hela klockan och verket är det svårt att förstå att denna klocka är väldigt unik. Det enda som avslöjar är trycket på tavlan ”Chronomètre” men det kan ju stå på många tavlor och behöver inte betyda något.
Man ser att det är fler stenhål än vad som skulle varit standard om detta varit ett enkelt urverk. Även motstensbrickan och ruckarmen syns att det är något speciellt med – utförande och polering är riktigt vackert. Ni som läser mina inlägg här på bloggen kanske känner igen en Guillaumebalans vid det här laget. Har ju haft nöjet att laga ganska många klockor med sådana balanser. Finessen med Guillaumebalans är att den har extremt bra temperaturkompenserande egenskaper. Gångresultatet påverkas väldigt lite av temperaturskillnader som annars är ett stort problem om du vill ha ett ur som går rätt.

Enligt texten i annonsen ovan var de klockor som testades 1950 utrustade med Glycudurbalanser med Nivaroxspiral. I denna klocka har balansen blivit utbytt till Guillaumebalans, varför och när?

Eric berättar följande om klockan:
Lavina nummer 63 var en av 6 Lavina-kronometrar att erhålla ett gångcertifikat för armbandsurverk i tävlingarna på observatoriet i Neuchatel mellan 1949 och 1952. Observatorietestningen var en del av marknadsföringen för Lavinas då nya 13-linjers urverk, kaliber 105. 1949 fick Lavina sitt första gångcertifikat med en kronometer med kaliber 105. Detta exemplar var utrustat med en Guillaume-balans och urverkets reglage utfördes av Lavinas kronometriavdelning. Året därefter, 1950, erhöll tre kronometrar utrustade med Glucydur-balans och Nivarox-spiral gångcertifikat. Reglage för dessa utfördes av Alfred Hofer fils från Saint-Imier i ett samarbete med företaget Nivarox, för vilka Alfred annars ofta arbetade som reglör. Som går att läsa på reklambladet om kalibern från 1950 var syftet att visa hur väl kaliber 105 presterade på observatoriet med samma typ av balanshjul och spiral som i Lavinas serieproducerade ur. 1951 fick Lavina och Alfred Hofer fils ytterligare ett gångcertifikat samt företagets enda observatoriepris. Efter 1951 upphörde samarbetet med Alfred och Nivarox och 1952 fick Lavina sitt sista gångcertifikat från observatoriet i Neuchatel. Denna gång var återigen Lavinas egna kronometriavdelning ansvariga för reglaget. Likt den kronometer som testades 1949, så användes nu en Guillaume-balans istället.
Lavina nummer 63 var en av de 3 tre kronometrarna med Glucydur-balans och Nivarox-spiral som testades och fick certifikat 1950. Med ett N-värde på 16,5 kom det på plats 41 av totalt 55 kronometrar som klarade den mycket krävande testningen för armbandsur på observatoriet 1950. I tävlingen ställdes Lavina-kronometrarna mot bland annat Omega 30mm, Zenith 135 och Peseux 260-kronometrar från ett flertal tillverkare, exempelvis Ulysse Nardin.
Efter samarbetet med Alfred Hofer fils omarbetades vissa kronometrar av Lavinas kronometriavdelning för omtestning på observatoriet, varav nummer 63 var en av dessa och som då också gavs en Guillaume-balans och stålspiral. Tyvärr nådde de omarbetade kronometerverken inga framgångar på observatoriet och de kom istället att boetteras i och säljas.

När jag tagit isär verket upptäckte jag två större problem. Det ena var en väldigt kort tapp på mellanhjulet det andra var en spräckt sten. En följd av den spräckta stenen var en skada på balanstappen.

Börjar med mellanhjulets tapp.
Man ser ibland hjul där urmakaren löst problemet med av en avbruten eller skadad tapp på samma sätt som var fallet med denna Lavina. Istället för att borra in en tapp har man svarvat en kort stump som ny tapp. Om jag råkar ut för att det inte finns ett nytt hjul att bara byta, brukar jag borra in en ny tapp. Med dagens fina borr i hårdmetall finns egentligen inget problem med att borra in en ny tapp.
Jag ville återställa hjulet så pass mycket att jag kunde pressa tillbaka stenhålet till sin ursprungliga position och göra en längre tapp så att hjulet återfick sin luft.
Det första man bör fundera på är hur sitter hjulet fast vid driven?
I detta fall var inte hjulet nitat utan fastpressat på axeln.
Hade hjulet varit nitat hade det varit lättare.
Principen är att svarva ned den befintliga axeln så att jag kan passa till ett ej genomborrat rör över axeln där jag kan svarva en ny tapp. I detta fall fick jag borra först med ett litet större borr eftersom jag inte kunde svarva ned den befintliga axeln alldeles intill hjulet, då hade hjulet lossat från axeln. Sedan ytterligare ett hål där jag anpassar axeln så att jag kan pressa fast röret med presspassning. Jag skulle också kunnat lämna den befintliga axeln orörd och pressat på ett grövre rör, men jag ville gärna tunna ner axeln så att den skulle likna den gamla axeln så mycket som möjligt. Nu kunde jag svarva ner röret till en tiondel över den gamla axelns mått. För att få fram avståndet mellan verkbottnen och bryggan använde jag ett gammalt fint verktyg. Det användes främst på cylinderurens tid, men det fungerar fint idag också. Om alla hjul ligger på samma nivå kan man ju också enkelt mäta ett annat hjul eller om hjulen ligger på olika nivå kanske man kan mäta nivåskillnaden med ett blad- eller skjutmått.

Det trasiga stenhålet var enkelt att byta. Den deformerade balanstappen var dessutom lite böjd. Jag skar bort den ”värsta” biten med en safirfil, sedan formade jag om tappänden – allt i rullbänken. Någon hade tryckt upp grader på undersidan av balanskloven, när jag tog bort dessa blev luften bra trots att axeln blivit något kortare.

Den sista åtgärden blev att justera tavlan som var ocentrerad, det var risk att tim- och sekundvisaren kunde ta i tavlan.

Lite mer om tappinborrning

Har gjort två inborrningar av balanstappar på senare tid, tänkte berätta lite om hur jag tänkt och hur jag gjorde. Har skrivit om detta tidigare men det skadar inte att upprepa, en användbar metod som i alla fall jag har ett ökat behov av. Reservdelar tar slut, eller är väldigt dyra – det går förhållandevis snabbt och enkelt att borra in en tapp och det blir ekonomiskt både för mig och mina kunder.
En balanstapp brukar ta ca 3 timmar att göra klar, tappar till vanliga löpverkshjul går fortare.

Den första var ett bordsur – Jaeger Le Coultre cal 250 – en del kallar verket banjo. Kaliber 250 har stötsäkrad balans, det finns även en äldre typ – kaliber 210, den har fasta stenar för balansen.
På båda dessa kalibrar är det vanligt att balanstapparna slits mycket.
Alla mina balansaxlar till dessa verk hade tagit slut. Jag letade lite på internet men kunde inte hitta någon axel. Det är lätt att bli fast framför datorn istället för att jobba, särskilt när man som jag inte är så bra på hitta där. Något som jag kan rätt så bra är att borra in tappar, så istället för att lägga timmar på nätet och sedan vänta veckovis innan grejerna kommer, paket som fastnar i tullen etc etc så beslöt jag mig för att sätta mig vid svarven.
Med rätt utrustning går det relativt snabbt att sätta in en ny tapp.
Här följer lite om hur jag gick tillväga:


Nästa projekt var ett echappement där kunden själv försökt sig på att vara urmakare. Följden av detta var en avbruten balanstapp, förstörd liverrulle och en spiral i kaos. Jag tog till rejält när jag gjorde kostnadsförslaget som kunden accepterade. Inget drömjobb precis, men fullt genomförbart.

Man behöver bra och nyslipade sticklar. Hårdmetallsticklar fungerar bäst. Likaså behöver du bra hårdmetallborr av rätt storlek. Till svarven behöver du tillsatsen för tappinborrning.
Börjar med balanstappen.

Leroy 4740 – vem tog besticken? Del 2.

Del 2.

I del 1 beskrev jag lite om hur jag tillverkade en saknad del av haken i en fin Leroykronometer.
Jag valde att fälla in en bit i den befintliga haken, ett rimligt alternativ både med hänseende till kunden och med min kunskap och de maskiner jag har tillgång till.
Med hjälp av min CNC-fräsmaskin kunde jag fräsa ut formen någorlunda snabbt, sedan formade jag resten för hand.

I denna typ av fina ur är hakstenarna inslipade av en gångriktare. När jag satte tillbaka stenarna räckte det med att trycka in dem i botten och sedan fixera dem – gången är redan inställd. Detta i motsats till moderna ur där urmakaren måste flytta hakstenarna för att ställa in gången rätt. Nästa moment blir att justera in anslagen. Här fick jag fila av sidorna på min tillverkade del tills gången gick igenom – enkelt uttryckt tills gånghjul och hake tickade fram. Denna klocka har inga anslagsstift utan anslagen är en del av verkbottnen. När jag justerat anslaget så att gånghjulstanden faller in på vila 1, sedan kontrollerat så att det fanns även dragning till vila 2 – då var det dags att börja forma hornen på haken. Då filade jag hornets yta tills liverstenen kunde passera fritt med luft och säkerhet. När jag i detta skede drog upp verket för att ge kraft fram till gånghjulet och satte fart på balansen gav haken tillräcklig kraft för att balansen skulle röra på sig utan spiral. Nu justerade jag längden på säkerhetskniven. Då vrider man balansen så att liverstenen går fritt ifrån haken. Då ska kniven ta i den lilla rullen på liverrullen, det skall vara lagom luft mellan lilla rullen/kniven/anslaget. Du kan se bilder och hur jag ställer in gången i ett annat inlägg genom att klicka här.

När haken var klar och klockan gick var det dags att ägna sig åt resten av verket.
Det enda fel jag upptäckte var att en verkhållarskruv var utbytt och en ny tillverkas.

Efter rengöring, epilamisering och ihopsättning var det dags att kontrollera hur klockan gick. Försökte rucka klockan men när jag ruckat till maximal saktning gick klockan bra. Det ser ju konstigt ut att ruckarmen står helt snett ut från kloven (se näst sista bilden), men denna balans har ju två justerskruvar för ruckning så det ska gå fint att justera dem något. För att sakta ner balansen behövde jag skruva ut skruvarna något. Testade att vrida ett varv på först den ena skruven sedan den andra.
KATASTROF!
Skruvskallen gick av!
Hur är det möjligt?
Man vrider ju mycket försiktigt på dessa skruvar, men den gick bara av…
Kanske var den skadad på något sätt, amputerad på samma vis som haken, vet inte.
Nackhåren reser sig – vad göra?

Denna skruv är troligen tillverkad av guld, att göra en sådan med rätt vikt, gänga etc är svårt. Skulle det vara möjligt att på något sätt fästa skallen i den avbrutna biten? Testade att vrida den gängade biten av den avbrutna skruven men den gick inte att rubba. Kanske kunde jag förbinda de båda delarna med ett stift, men dimensionerna är ju så små!
Ett borr 0,15 mm visade sig göra jobbet. Borrade först ett hål i den gängade biten som satt kvar i balansen – det gick bra – hålet hamnade bra i mitten. Satte skruvskallen i svarven och borrade hålet. Fortsatte i svarven med att göra ett passande stift. Sedan var det ”bara” att trycka ihop alla delar med lite Loctite. Det lyckades!
Testade i balansvågen så att inte balansens tyngdpunkt förändrats, men den var bra.
Puh!

Ett roligt och intressant projekt där jag funderade många timmar på hur jag skulle lösa problemet på bästa sätt. Det hade varit spännande att få veta vad som hänt med det saknade ”besticket”…

Klicka på småbilderna!

Leroy 4740 – vem tog besticken? Del 1.

Eric hade fått tag på en speciell klocka – en kronometer från Leroy. Men det fattades något i verket.

Man känner att det är kvalité – bara att ta i fickuret ger en speciell känsla. En kraftig silverboett med dolt charnier – det vill säga att du ser inte gångjärnet för bakboetten när locket är stängt. En vacker gul urtavla med handmålade siffror och text.

Verkets utformning kände jag igen från tidigare Leroyklockor jag lagat. Enkel dekoration med en vacker Leroygravyr på centrumbryggan – men alla delar extremt välgjorda och av allra högsta kvalité. Vipèrestämpeln visar att detta är en observatorietestad kronometer. Guillaumebalansen svängde fint men klockan gick inte…
Hmm…
Gångpartiet verkade intakt, så vad hade hänt?
Lyfte ur balansen och upptäckte att del av haken saknades!
Kniv och gaffel var borta…

Jag kunde se spår av lim? på stumpen som fanns kvar – låg den avbrutna delen någonstans i boetten eller verket? Tog försiktigt ur verket från boetten men jag kunde inte hitta den saknade delen.
Eric ville väldigt gärna få fart på den fina klockan, så jag fick fundera på en lösning.

Om jag haft den avbrutna delen hade det varit enklare. Då kunde jag kopierat den gamla. Hur gör man en ny hake? Kollade min litteratur, i Daniels – Watchmaking hittade jag en bra beskrivning.  Men för att göra en ny hake krävs en korrekt uppritad gång. Då måste jag mäta upp delarna i verket mycket noggrant för att få fram hakens form. Sedan återstår ändå mycket jobb, gaffelns och hakstenarnas spår skall skäras med slitsfräs, hål för kniv och hakbom skall borras, korrekt form på haken fräsas och formas. Rätt många moment som måste bli exakt utförda för att haken skall fungera.
Finns det något annat sätt?

Funderade på om man kunde lasersvetsa fast ett stålämne som jag sedan kunde bearbeta. Jag har ett par olika personer som jag vet äger sådan utrustning. Om jag skulle få fast ett ämne på haken, hur skulle jag anpassa och forma ämnet?
Vad kan jag göra med min egna utrustning och mina maskiner?
Ja det var många funderingar.
Nästa fundering, vad skulle det kosta?
Det var ju inte min klocka. Hur mycket pengar var min kund beredd att satsa?
Inga av de olika funderingarna var omöjliga att genomföra, men jag tänkte göra ett försök med mina egna resurser.

Häng med! Så här kan man också göra:


Ett första test i klockan. Det går att röra på haken – det finns hopp.


Provar så att gången funkar. Haken ger skjuts åt balansen.


Klockan går!

 



Horn- och knivlufter rätt inställda.

Ett relativt enkelt sätt att få till en fungerande hake och klocka. Dessutom visade det sig att det gick fint att limma.
I del 2 beskriver jag resten av klockan.

Ulysse Nardin – Ebauche Nardin 22/24

Fick ett vackert däcksur för reparation. Det lär ha använts i den svenska marinen.
Urverket är vackert utformat med noggrant tillverkade delar, verket har funnits i flera olika varianter. Jag har tidigare skrivit om en variant med centrumsekundvisare (kolla här). Verket som detta inlägg handlar om har gångreservsvisare.
Jag fick problem när jag skulle ta isär verket för gångreserven. Låsbrickan som sitter överst gick fint att lyfta av med ett par hävarmar, men när jag på samma sätt skulle lyfta av driven gick det inte. Provade att lyfta under, men det var för trångt, jag var rädd att skada drivens tänder. Provade att sätta ett par hävarmar under det stora hjulet och låta det trycka upp driven. Tog i som sjutton men det kändes inte bra, driven släppte inte. Funderade på om den kanske var gängad eftersom den satt så hårt. Frågade min vän Eric om han genom sina kontakter kunde ta reda på hur den var fastsatt så att jag inte skulle förstöra något. Efter ett tag fick jag svar! Den är trängd på axeln, och man ska genom att lyfta hjulet med hävarmar kunna få driven att släppa.
Tog fram ett par kraftiga hävarmar för att göra ett nytt försök. Satte en bit rodico över driven ifall den skulle sätta fart när den släppte. Sedan tog jag i rejält med hävarmarna!
Hjulet fjädrade rejält – plopp – driven var lös!
Det var tur jag satte rodicobiten över för hjulet fjädrade tillbaka och fick fart.
Tänk på att sätta ihop stoppverket på fjäderhuset rätt innan du driver på alla delar i gångreservsverket.
Inte så mycket att säga mer om verket än att det är fantastiskt välbyggt i superkvalité.
Klicka på småbilderna!

Kundo electronic – fnurra på tråden

Fick in ett trevligt Kundo bordsur för reparation. Ett nytt batteri hjälpte inte för att få igång klockan. Något var fel med antingen spolarna eller transistorn.
Mina tankar gick så här: ett bordsur som står stilla – spolarna kan ju knappast vara trasiga, det borde vara transistorn som gett upp. Men hur vet man det?

Det var ett tag sedan jag fick lära mig hur ett transistorstyrt verk fungerade, och hur man mäter upp en transistor.

Väldigt förenklat kan man säga att en transistor fungerar som två dioder. En diod kan bara släppa igenom ström åt ena hållet. Så för att kolla transistorn mäter du resistansen mellan kollektor och bas och mellan emitter och bas. Sedan polvänder du mätinstrumentet och gör om mätningen. Om transistorn är hel blir det 0 ohm på ena hållet och inget motstånd åt andra hållet. Ganska enkelt. (Se kopplingsschemat längst ner.)

För att komma åt spolarna och elektroniken krävs en del arbete, men det går att ta av det förgyllda höljet runt plastspolen. Sedan är det enkelt att mäta upp transistorn och spolarna med ett vanligt mätinstrument med ohmmätning. Jag tog bort transistorn från kretsen för att lättare mäta.
Då visade det sig att transistorn var hel, men en av spolarna hade ingen resistans.

Jag ska försöka förklara lite enkelt hur elektroniken fungerar i denna klocka.
I ena änden av den bågformade undre delen av pendeln sitter en magnet. När magneten rör sig igenom styrspolen induceras/bildas en ström (på samma sätt som en generator). Styrspolen är kopplad till transistorns bas och emitter – när en svag ström passerar här öppnar transistorn vägen fri för ström över emitter och kollektor vilket innebär att drivspolen får full kraft och skjuter iväg magneten åt motsatt håll samtidigt som induktionen upphör i styrspolen då stängs ”strömkranen” över drivspolen. Pendeln vänder – magneten passerar båda spolarna – eftersom transistorn även fungerar som en diod induceras ingen ström förrän pendeln åter vänt och passerar åt ”rätt” håll igenom spolen. Polariteten på strömpulsen beror på magnetens polaritet.
Genialt enkelt!
Batteriet varar länge eftersom drivspolen endast får en kort ”puff” vid varje hel svängning av pendeln.

När dessa klockor var ropet i början av 80-talet fanns det hela ”elektronikburkar” att köpa och enkelt byta. Efter en hel del letande efter en ny spole gav jag upp…
Började undersöka möjligheterna att själv linda om spolarna. Det visade sig också svårt att hitta isolerad koppartråd av rätt dimension men efter många om och men hittade jag en engelsk leverantör. Jag hittade även en väldigt bra artikel om hur många varv som krävdes och mycket annat.

Tänkte med hjälp av min CNC-maskin linda om spolarna. Då har man möjlighet att dels röra spolen i sidled så att det lindas jämnt, dels snurra den det antal varv som krävdes.
När jag fått trådrullen, byggde jag en enkel ställning för den. Satte kullager på axeln för att den skulle rulla lätt och fint. Träplattan skruvade jag sedan fast på ett fotostativ i rätt höjd.
I frässpindeln fäste jag ett rör där jag förde in en fuktig Wettexduk som spoltråden kunde passera. Jag fick då en jämn och fin friktion så att spolen lindades lagom tajt. Jag lödde fast spoltråden på en kopplingstråd, sedan var det dags att köra!
(Förmodligen var det här som den ”gamla” spolen hade gått sönder – i lödningen mellan spoltråd och ledningstråd.)

Spolen man lindar först är styrspolen – den lindas med 5000 varv.
Drivspolen skall lindas med 3000 varv.
Tråden jag använde var 0.063mm, 42 AWG Enamelled Copper Magnet Wire – Solderable (250g).

Jag lödde in komponenterna på ett experimentkort för att lätt kunna provköra och testa om jag gjort rätt. Det visade sig när jag väl fick igång klockan att den svängde för bra!
Pendeln slog i spolen. För att minska svängningen blev jag tvungen att byta ut motståndet över drivspolen till 6kΩ istället för 5,1 kΩ.
När jag jobbade med att ta loss komponenterna skadade jag plasten med lödkolven, jag valde därför att behålla mitt lilla kretskort på utsidan. Det blir också lättare att mäta upp det som behövs om kretsen sitter mer lättåtkomlig. Jag byggde in kretsen i en burk som jag placerade vid batteriet.

Källhänvisningar finns längst ner på denna sida. Även några filmer.

Källor:
Fantastisk bra artikel om hur allt fungerar:
https://sound-au.com/clocks/kundo.html

Belganet, ellära. Sök efter Mätningar på transistorkopplingar.

Brocott, leverantör av spoltråd mm.

Tack till Johan och Kurt för hjälp med projektet.